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SUMMARY 
A perturbation approach is presented to the periodic optimization problem of certain classes of nonlinear 
dynamical systems, for small-amplitude forcing functions, and within specific frequency ranges derived 
from Guardabassi's n-criterion. The procedure is illustrated by means of a classical example in chemical 
engineering, involving the optimal periodic operation of a continuous stirred tank reactor, in which two 
parallel reactions take place. The analysis is performed at cycling frequencies slightly above the minimum 
frequency, where, according to the n-criterion, performance improvement by cycling becomes possible. 
The per cent production gains over the optimal stationary operation are evaluated, as a function of the 
amplitude and frequency of the oscillations allowed to exist in the system, and as a function of the process 
parameters. Also the characteristics of the control and state waveforms are analysed. Thus the existence and 
practical applicability are demonstrated of a mathematical relationship between the optimal periodic control 
problem, the ~-criterion, and the theory of perturbations. 

1. Introduction 

Design techniques for industrial plants are usually aimed at operating the system at a suit- 
able, eventually optimal, constant state. In recent years however, especially in the field of  
chemical engineering, an increasing interest has become apparent in the possibility of al- 
lowing the control of a process to be varied periodically. A collection of applications- 
oriented papers on this topic can be found in [1]. An introduction to the theory of op- 
timal periodic control is provided in [2, 3]. Papers in the area of periodic optimization of 
continuous systems are often related to one of the following two important questions. First 
the basic problem is raised, under what conditions the optimal steady-state operation of a 
given plant can be improved by implementing a nonconstant periodic regime. Once this 
point has been settled, the question naturally arises, how the obtained information could 
be exploited, to approach the optimal periodic operation as closely as possible, in terms of 
the selected performance index. A powerful tool to investigate the first problem is a fre- 
quency condition, developed by Guardabassi and his coworkers [4], which is known as the 
n-criterion. It encompasses, or is connected to, some earlier, more conservative results [5]. 
The second question is more difficult to answer. Necessary conditions for the optimal 
periodic operation of  a continuous stationary dynamic system have been known for a 
relatively long time [5], However, applying them to actually solve an optimal periodic 
control problem requires the explicit computation of periodic motions in the associated, 
normally nonlinear, Hamiltonian system. In the face of the extreme difficulty of solving 
this problem in general, considerable attention has been paid to the treatment of two lira- 
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iting situations, that of very slow cycling (quasi-stationary operation), and that of very 
rapid cycling (relaxed operation). A thorough investigation of the relaxed operation of a 
continuous stirred tank reactor (CSTR) has been provided by Matsubara et al. [6]. These 
limiting modes have several obvious drawbacks. In no way do they explore the possibility 
of improving system performance by intentionally using the peculiar dynamics of the con- 
trolled system, since both relaxed and quasi-stationary control in fact eliminate the role of 
system dynamics. Moreover, high frequency control switchings, necessary to approximate 
a relaxed operation, may be difficult and costly to implement in practical situations, where 
such variables as temperatures or heat flow play the role of the driving function, which 
forces the system into oscillation. 

Recently a possibility has been suggested to solve the optimal periodic control problem 
at frequencies, close to the critical frequencies which delimit the intervals where perfor- 
mance improvement may be realized, according to the n-criterion [7]. The method relies 
on classical perturbation techniques and provides only a partial and approximative so- 
lution to the optimal periodic control problem. In certain cases though, the supplied in- 
formation may be useful. For example, if the n-criterion is satisfied in some bounded in- 
terval (0)1, 0)2), then optimal periodic solutions may be obtained for frequencies, slightly 
larger than 0)1, and slightly smaller than 0) 2. If e h and 0) 2 are not too far apart, and the 
computations are carried out to sufficient accuracy, a good estimate of the desired solutions 
may be found for all frequencies in (0)1, 0)2). Another interesting case occurs when perfor- 
mance improvement is only possible for cycling frequencies larger than some lower bound 
0)0. Increasing frequencies tend to increase the average speed of variation of the control 
force, as a function of time, and hence increase the difficulty of implementing this control. 
Therefore it is quite conceivable that in certain cases, from a technical point of view, a 
desirable mode of operation might be an optimal periodic control at some preselected fre- 
quency, slightly exceeding the minimum frequency where cycling becomes advantageous. 

Of course, it must be stressed that restricting control frequencies to fall within the prox- 
imity of Guardabassi's critical frequencies, and also, requiring oscillation amplitudes to 
be small, are mathematical necessities for a perturbation technique to be valid, and these 
restrictions cannot be generally justified by practical considerations. Indeed, there is no 
general reason for presuming that technological or other practical engineering constraints 
would necessarily restrict the acceptable control frequencies and amplitudes in the indi- 
cate~t sense. However, since perturbatio~ techniques seem to constitute the only available, 
general analytical tool for actually calculating oscillations in highly nonlinear systems, it 
seems to be a fair appraisal that such restricted results are the best that presently can be 
hoped for. Indeed, while the theories of relaxed and quasi-stationary periodic control are 
well-established today, no analytical, quantitative methods are available in the literature 
for the intermediate frequency range. 

In the chemical engineering literature, a classical problem case of periodic optimization 
involves a periodically operated CSTR with two parallel reactions. Performance improve- 
ment by cycling is only possible for frequencies exceeding some minimum value. This ex- 
ample has been discussed by Horn and Lin [5], among many other investigators. In order 
to explain our approach, we shall intentionally reconsider this well known test case, such 
that, within the framework of the existing literature referring to it, the merits and short- 
comings of the present method are clearly illustrated. 
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The relaxed operation of the CSTR with two parallel reactions was studied in [5], and 
also, to more detail, in [6]. In the present contribution, the optimal periodic operation of 
the same reactor system is analysed, but, with respect to the selected frequencies, the op- 
posite extremum is considered of a relaxed control: The system is driven at frequencies, 
slightly larger than the minimum value at which performance improvement by cycling be- 
comes possible. Also, in the performance index, oscillation amplitudes are penalized. As 
explained, pursueing such low amplitude and low frequency operation are both mathe- 
matical necessities for the perturbation method to apply, but, at the same time, these re- 
strictions may, to some extent, be justified by practical considerations. The structure of 
the paper is as follows. First, for easy reference, a short review is given of the basic con- 
cept of finding solutions to an optimal periodic control problem using perturbation tech- 
niques. The formal problem statement for the considered application follows. After an out- 
line of the computational procedure applied, the results are presented, yielding perfor- 
mance improvement and characteristics of the control and state waveforms, as functions of 
the amplitude and frequency of the state oscillation, and the system parameters. Two cases 
are considered, dealing with the parallel reaction of a linear and a second-order, resp. a 
linear and a third-order reaction. 

2. Background 

Consider an unconstrained optimal periodic control problem, with system equation 

= f(x, u), (1) 

and performance index to be maximized, 

J[u(.)] ~= g(x, u)dt, 

subject to the condition x(0) = x(z). z is a fixed positive constant. Define 

h(x, u, ;0 ~ g(x, u) + ,Z'f(x, u). 

Let {Xo, Uo} be optimal within the class of constant solutions of (1), and Jo the corre- 
sponding value of (2). Then there exists a solution {:co, uo, )~o} of the system of algebraic 
equations 

hx(x o, Uo, 20) = O, h.(xo, Uo, 20) = O, f(xo, Uo) = O. (3) 

Define 

A s fAXo, Uo), B & L(Xo, uo), 

P &- hx~(Xo, Uo, 2o), Q ~ h~.(Xo, Uo, 2o), R A= h..(xo ' Uo, 20). 

Letting x = Xo + Ax, u = Uo + Au, (1) and (2) become 

A:c = AAx  + BAu + q(Ax, Au), (1') 
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1; 
J - Jo = --  [h(x, u, 20) - h(xo, Uo, 20)] dt = 

l I" QIF  l } 
Jo I. 2 LAuJ LQ' + dt. (2') 

Here q is a second-order, and ~ a third-order expression in the components of Ax and Au. 
Assume that A has no characteristic values on the imaginary axis, B has full rank and R 
is nonsingular. I f  there exists a continuous function Au(t), 0 < t <_ z, for which (2') is 
maximized, then Au(t), Ax(t) and p(t) satisfy the Hamiltonian system 

3H OH OH 
A i c - O p ,  (4.a); P ~ -  OA---~' (4.b); O - O A u '  (4.c); 

where 

= -2 LAuJ LQ' ~u + ~(~x, Au) + p'[AAx + B~u + ~(ax, Au)], 

(5) 

with the constraints Ax(O) = Ax(v), p(O) = p(z), hence, in view of the algebraic equation 
(4.c), Au(O) = Au(~), [5]. After eliminating Au, (4) takes the form 

= Mz + ~(z), 

M ~- V A - BR-1Q ' 
L - P  + QR-XQ ' 

-BR-XB' 1 
- A '  + QR-1B']  ' 

Z ~ ~ 

P 

(6) 

p is the costate vector of Ax, and ~ is a second-order expression in the components of z. 
By the n-criterion, a sufficient and locally necessary condition for the existence of a pe- 
riodic operation with angular frequency co, better than the optimal constant solution, is 
that H(co) s G'(-jco)PG(jco) + Q'G(jco) + G'(-jco)Q + R, G(s) A= (sI - A) - IB ,  is par- 
tially positive [4]. Critical frequencies are called those frequencies coo for which det H(coo) = 0. 
If  H(co) is partially positive for co e (coo, cob), and not partially positive for co e (co,, coo], then 
coo is critical. In [7] it has been shown that if ~o is critical, then M has the characteristic 
values -+Jco0. Now the substitution z = e~ transforms (6) into 

A } = M~ + el(z, Q, (7) 

to which classical perturbation techniques can be applied for constructing periodic so- 
lutions with frequencies, close to the proper frequencies co o of the unperturbed system, 

= M L  If an optimal admissible control with frequency co exists, then it is a periodic so- 
lution of (7). This solution can be detected by solving the associated bifurcation equations, 
and computed by a method of successive approximations. The successive approximations 
converge to the desired solution if 8 is sufficiently small, which implies that periodic so- 
lutions can be obtained with sufficiently small amplitudes, and frequencies, sufficiently 
close to coo. 
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3. System definition and problem statement 

A CSTR is considered in which two parallel reactions, A ~ B, of order c~, and A ~ C, of 
first order, take place. The reaction rates are given by the Arrhenius equations, r 1 = 
= h 1 e x p ( - E 1 / R T ) ' C ~ A ,  and r 2 = h z e x p ( - E 2 / R r ) . c  A. Flow rate q and feed concentra- 
tion Cao are constant. The tank, of volume V, is temperature controlled. For this system 
the normalized dynamic equations read [5]: 

dx l  
d~- - u x ~ - a u P x l - x  1 +  1, (8.1) 

dx2 
- u x ~  - x 2 ,  (8.2) 

dt 

where the meaning of the symbols is the following: 

x 1 = CA/CAo , X 2 = C J C a o ,  t = q t l / V  , u = (Vh~/q)C~o 1 e x p ( - E 1 / R T ) ,  

p = E z / E I ,  a = (Vh2/q)[(Vhl/q)C~Ao'] -p  

and tl representing real time. The objective is to maximize the average production of B by 
periodic optimization, while keeping oscillation amplitudes and frequencies within reason- 
able limits. As a performance index, let 

j A= [x 2 - O(u - Uo)4]dt (9.1) 

where Uo is the optimal constant control, and 0 > 0 is a weighting coefficient. By an ap- 
propriate choice of 0, control fluctuations, hence also state fluctuations, can be effectively 
contained within preassigned boundaries. Integrating (8.2) and using the periodicity con- 
straint x2(0) = x2('c), shows that J can be written as 

J = - -  [ux~ - O(u - Uo)4]dt, (9.2) 
T, 

where x~ satisfies (8.1). Hence the problem is reduced to the periodic optimization of a 
first-order system. 

As is well known [5], a static optimum {Xo, Uo} exists if 

~p > 1, (10) 

which can be computed, together with the Lagrange multiplier 2o, using (3). These equations 
yield 

u o = [a(o~p-  1)] -~/p, 

UoX~ + (aug + 1)Xo - 1 = 0, 

from which x o > 0 can be obtained, and 

"~0 ~ - l ~ r  ~ - 1  = Xo /tXo + a p u ~ - l ) .  
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Then the static optimum equals 

Jo ~ UoX~" 

Some further calculations reveal that 

A = -~UoX~o-t/2o, B = - x ~ / 2  o, P = ~(c~ - 1)(1 - 2o)UoX~ -z, 

Q = e(1 - 2o)X~ -1 - ap2ou~ -1 ,  R = - a p ( p  - 1)2oXoU~ - z ,  

while G(s) = B/ ( s  - A)  and H(og) = ( P B  2 - 2QBA)/(O9 2 + A 2) + R.  Since the static so- 
lution {xo, uo} is optimal, / / (0)  < O, or 

P B  z - 2 Q B A  + R A  z < O. 

Then, by the z~-criterion, the static optimum can be improved by cycling if R > 0, or 

p < 1, (11) 

(cf. [5]), and the cycling frequency must exceed COo, defined by 

o92 o = 2 Q B A  - P B  2 - R A  2 

R 

o90 is independent of the weighting coefficient 0, because in the performance index (9.1) 
the fourth power of  the control fluctuations was penalized (This would not be true if the 
second power had been used). The problem now consists in determining the optimal pe- 
riodic regime for a given cycling frequency 09, slightly exceeding the critical frequency COo. 
The per cent production gain 

F ~ (ux~ - Jo )d t  

_ 1 f~ [h(x, u, 40) - h ( x  o, Uo, 4o) + O(u - Uo)4ldt (12) 
Jo z Jo 

will be evaluated as a function of the process parameters, and the characteristics of the 
control and state waveforms u(t) and x~(t)  will be analysed. 

4. Computational procedure 

In this section an outline is sketched of the successive computational steps involved, and 
the accuracy to which they have been carried out, in order to obtain the results presented 
below. The first step consists in determining the right hand sides of (1') and (2') with 
sufficient accuracy. This is done by expanding f ( x ,  u) and h(x ,  u, 20) in Taylor series about 
the optimal constant solution {x o, Uo}, yielding expressions of the form 

2 3 

2-~ i qa , iAx~-~Aui ,  A x  I = A A x l  + B A u  + ]~ ~lz,~Axl Au + 
i = 0  i = 0  

(13) 
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m = 1 2 h(x, u, 20) h(xo, Uo, 20) z P A x l  + QAxlAu  + �89 z + 

3 4. 

+ Y'. ~3,iAxaa-~Au~+ ~. ~4,1Ax~-iAu ~. (14) 
/ = 0  i=O 

Expansions up to the third, resp. fourth order terms in (13) and (14) are necessary to com- 
pute the first term in the series expansion of F, which is proportional to the fourth power 
of the oscillation amplitudes (see below). Higher-order terms have been neglected. The 
coefficients appearing in the expansions are functions of the system parameters e, a and p. 
Note that ~4,, is the only coefficient which depends on 0. Subsequently the Hamiltonian H 
is constructed according to (5) and the equations (4.b-c) are derived, having the form 

p = - P A x  1 - QAu + OZ(Axl, Au, p) + O3(Axl, Au, p), (15) 

RAu + QAx t + Bp = 02(Axl ,  Au, p) + 03(Axl ,  Au, p). (16) 

From (16), Au must be obtained as a series expansion in Axl and p. This is done by suc- 
cessive approximations, the first approximation being 

Q B 
Au = - ~ Ax~ - -~p .  (17) 

Substituting (17) in the right hand side of (16) and neglecting third-order terms, yields the 
second approximation, Au = - ( Q / R ) A x l  - (B/R)p + Y'.~=o ~k2, " 2-i i iax~ p ,  and, proceed- 
ing in the same way, the desired result 

Q B 2 a 
- -  - O2.iAxl p + • (18) ~a,iAxl P Au = Ax 1 _~p  + ~. 2-i i s - i  ~ 

R ~=o ~=o 

is found. Substituting (18) in (13) and (t5) produces the system (6), with 

F A -  Q/R ], 
M = L _  P + Q z / R  - A + Q B / R  d 

and the components of the vector ~(z) having the form 

2 3 
~j(z) Z 2- i  ~ -~p', = ~j,z,iAxl p + ~ ~j,a,~Ax~ j = 1, 2 

i = 0  i = 0  

M has the characteristic values +flo o, as explained in section 2. After transforming (6) 
into (7) the desired periodic solutions can be obtained using a standard perturbation anal- 
ysis [8], yielding results of the form 

Ax 1 = R o sin cot + RoZ[~ + ~2 sin(2cot + q~)] + O(R3), (19) 

[ -B- Ro sin cot - arc tg + R2[~3 q- ~4 sin(2cot + ~b2) ] + 

+ O(R~),  

co = coo + ~5(O)R~o + O(Ro*), 

r = ~6(O)R~ + O(R~o). 

(20) 

(21) 

(22) 
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Ro is proportional to e. The coefficients ~l-g4 and q51-q52 depend on the process para- 
meters e, a and p, but not on 0; e5 and e6, however, depend on the process parameters and 
on 0. This means that the weighting coefficient in the performance index (9.1) only affects 
the frequency-amplitude relationship (21) of the optimal periodic operation and the per 
cent production gains (22), but has no direct effect on the form of the state and control 
functions (19) and (20), up to the second harmonics. These expressions only depend on 0 
implicitly, through the relation (21). 

5. Results 

As already stated, the process dynamics depend on the parameters ~, a and p. In addition, 
the weighting coefficient 0 was introduced in the performance index (9.1). c~ and p must 
satisfy the inequalities (10, 11), in order that there exists a static optimum which can be 
improved by cycling. This implies that the integer ~ must at least equal 2. A complete anal- 
ysis of the production gains and the state and control waveforms, up to the second har- 
monics, has been carried out for the case e = 2. The results for higher values of ~, in par- 
ticular for ~ = 3, are quite analogous. Therefore merely a short discussion for the case 
c~ = 3 has been included, without reproducing the numerical data. The choice of 0 is de- 
termined by the size of the oscillations that can be allowed to exist in the system. A good 
measure for this size is Ro, the amplitude of the fundamental harmonic of the state wave- 
form. Indeed, as will be shown below, the higher-order harmonics of Axl(t) decrease in 
size rapidly, and the state oscillations are almost sinusoidal. For a given frequency co and 
for given process parameters, 0 is tied to Ro by the relation (21). In all diagrams, the re- 
sults have been represented as parametric curves, with Ro as a variable parameter. For  each 
choice of co > coo and Ro, the corresponding 0 has been computed from (21), and the con- 
dition 0 > 0 has been checked. Remarkably enough, for 0 = 0, es(0) is consistently nega- 
tive, which means that for 0 = 0 the Hamiltonian system (6) has no periodic solutions with 
co > coo. Hence there exists no optimum if the oscillation amplitudes are not penalized. 
The influence of the parameter a on the results is small. For  example, for ~ = 2, p = 0,8, 
Ro = 0,1 and co = 1,25coo, the per cent production increase, as a function of a, varies ac- 

cording to the following table 

a F 

0,5 1,2861% 
1 1,2130% 

1,5 1,1918% 

Therefore, following Horn and Lin [5], a has been given the fixed value of a = 1 in all 
subsequent calculations. Then, only a single parameter, p, is left, which is confined to the 
interval 1/c~ < p < 1. Figure 1 displays the critical frequency e)o, the optimal constant 
control Uo and state Xo, and the corresponding production Jo, as functions of p, for c~ = 2 
and a = 1. coo grows unbounded as p approaches its upper and lower limits. Jo and Uo 
decrease monotonically, and Xo increases monotonically, for increasing p. 
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Figure 1. Critical frequency ~Oo and optimal constant values Uo, Xo and Jo, as functions of p, and for 
e = 2 a n d a =  t. 

,In Figure 2 the per cent production gains versus the coefficient p are shown for varying 
Ro, and for frequencies co, selected at 10 ~ ,  25 ~o and 40 ~ above the critical frequency co o. 
The dotted line represents the points where the minimum value of  the control function u(t), 
during the cycle, becomes zero. Since u(t) is a positive quantity, this line constitutes a 
physical upper bound for the production increases that can be obtained by the present 
analysis and the modes of operation resulting from it. The accuracy of the results decreases 
with increasing Ro and increasing co, for the reasons already explained. The maximum at- 
tainable F increases with increasing co, the relationship being roughly proportional. This 
is to be expected, in view of  the results in [5], where a hill-climbing search for the optimal 
periodic solution resulted in control functions with increasingly faster switchings, ap- 
proaching a relaxed operation. F also increases with R o. The increase is faster than linear, 
but slower than the fourth power relationship (22), which is valid for a constant 0. For  a 

constant 0, co grows with Ro, according to (21), hence inducing stronger increases of F 
than in the case where co is kept constant. 

In Figures 3-8, the control and state waveforms Au(t) and Axl(t ) have been analysed, 
up to the second harmonics. As already mentioned, the constant terms and the amplitudes 
and phase angles of the first and second harmonics do not depend on 0. Hence they can be 
studied as functions of the system parameters and of Ro, the results being valid for all co. 
This is no longer true for the higher harmonics though. Since the higher harmonics also 
tend to decrease in size sharply (being proportional to increasingly higher powers of R0), 
they have not been considered. Figure 3 shows the constant terms in Au(t) and Axl(t), 
relative to the optimal constant values u o and x o. Both ratios, %R~/u o and ~lR~/xo, are 
equal. This is peculiar to the case e = 2 however, and does not hold for c~ = 3. The con- 
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Figure 2. Per cent production gains /1  as a function of p, for varying oscillation amplitudes Ro and frequen- 
cies e~, and for a -- 2 and a = 1. (a) (o = 1,1t~o, (lo) o~ --- 1,25e~o, (c) co -- 1,4~oo. 
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Figure 3. Constant terms in the control and state waveforms Au(t) and Axl(t), relative to the optimal 
constant values uo and xo, for c~ = 2 and a = 1. Both ratios, c~3R~/uo and cqRZ/xo are equal. 

stant terms are always positive, which means that in optimal periodic operation the average 
value of the control and state functions exceeds the optimal constant values. The bias be- 
comes important for small values of p, but remains smaller than 30 ~ .  Again in this figure 
and in the subsequent ones, the dotted line denotes the physical bound, set by the con- 
dition u(t) > 0 for all t. 

Figures 4-5 refer to the first and second harmonics of the control function Au(t). Figure 
4a shows the amplitude of the first harmonic, relative to u o. For a fixed Ro, the ratio in- 
creases as p approaches its upper and lower limits, causing the minimum of u(t) to reach 
zero both at the higher and the lower sections of the range of p. The ratio may exceed 1 
however, due to the positive constant term in Au(t), and due to the second harmonic which 
tends to flatten out the control waveform in the intervals where Au(t) is negative. This can 
be verified upon inspection of  the phase angle diagrams in Figures 4b and 5b, which show 
that 

q ~ z + 2 a r c t g  - 2 ' 

such that the second harmonic increases both the maximum and the minimum of the con- 
trol function (see Figure 8 for some examples). Figure 4b also shows that the control and 
state oscillations are dephased by more than 90 ~ and that the dephasing approaches 180 ~ 
as p approaches its lower limit. 

The amplitude of  the second harmonic, relative to Uo, is given in Figure 5a. The size of 
the second harmonic may amount to about 50 ~ of the size of the fundamental harmonic, 
such that the control waveform is substantially nonsinusoidal. 
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Figure 4. Control function Au(t): (a) ratio of fundamental harmonic amplitude ~/(o~ 2 + A:)Ro/B to 
optimal constant control uo; (b) phase angle, -arctg(Coo/A) of the control fundamental harmonic 
(case ~ = 2, a = 1). 

Figures 6 and 7 display the characteristics of the first and second harmonics of Axl(t ). 
Figures 6 and 7a show the relative amplitudes of the fundamental and second harmonics, 
Ro/xo and ~ 2 R 2 / x o  . The amplitude of the second harmonic has the order of magnitude of 
10% to 15~ of the amplitude of the fundamental harmonic. As a result, the state fluc- 
tuations are much closer to a pure sinusoid than the control fluctuations, and Ro is close 
to the actual size of the state oscillation. As before, the dotted lines denote the boundary 
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Figure 5. Control function Au(t): (a) ratio of second harmonic amplitude ~4Ro z to optimal constant 
control Uo; (b) phase angle 4~ of second harmonic (case c~ = 2, a = 1). 
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Figure 6. State function Axl(t): ratio of fundamental harmonic amp|itude Ro to optima! constant state Xo 
(ease  = = 2, a = 1). 

where the minimum value of the control function u(t) becomes zero. At any point below 
this line, the sum of the relative amplitudes of  the first and second harmonics of  Axl(t) 
is smaller than approximately 0,7. Hence the condition xl(t) > 0 is certainly satisfied in 
this region. This shows that the present analysis, and the modes of operation resulting from 
it, are truly limited by the physical bounds on the control fluctuations, and not by the state 

fluctuations. 
In Figure 8 the control and state waveforms have been computed as functions of time, 

for a given set of  process parameters and for Ro = 0,04 and R o = 0,1. For  R 0 = 0,04 the 
constant terms in Au(t) and Axl(t) are both very small, while the second harmonic of  
Axe(t) is completely negligible. The state oscillation is approximately sinusoidal, while 
the control oscillation contains a second harmonic which increases both the maximum and 
the minimum of the waveform. The same effect appears for Ro = 0,1, but the second har- 
monic is more important, and becomes discernible in the state oscillation as well. Also the 

constant terms in Au(t) and Axe(t) have increased in size. 
In the case where ~ = 3, the results are completely analogous to the case ~ = 2, except 

for numerical differences. For example, the curves yielding the relative production gains F 
as functions of  p and Ro, for a given frequency 09, are quite similar in shape to those for 
a = 2. Again, F increases with both increasing frequency and amplitude of  oscillation. 
However, the numerical values of  F are consistently about 50 ~o larger than in the case 

= 2, and the interval for p, where production increases by cycling are possible, becomes 
{0,333 < p < 1}. Also the general characteristics of the control and state waveforms and 
the discussions related to them remain unaffected, except that now the relative value of 
the constant term in Au(t) is larger than the corresponding term in Axe(t). 
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Figure 7. State function Axl(t): (a) ratio of second harmonic amplitude ~zR~ to optimal constant state Xo 
(b) phase angle ~ of second harmonic (case ~ = 2, a = 1). 
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Figure 8.~Time course of  the control and state functions, relative to the optimal constant values, for 
= 2, a = 1 and p = 0,75, and for two different values o fRo .  (a) state and control functions for Ro ----- 0,04; 

(b) state function for Ro = 0,1 ; (c) control function for Ro = 0,1. 
(1): waveforms up to the second harmonic; (2): waveforms up to the first harmonic; (3): the constant terms. 
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6. Conclusion 

The optimal periodic operation has been investigated of a CSTR in which two parallel 
reactions take place, and which is controlled by reaction temperature. An approximate so- 
lution to the periodic optimization problem has been constructed, for small amplitude os- 
cillations, and at frequencies slightly larger than the minimum frequency above which 
cycling may improve the optimal constant operation. The solution has been obtained using 
a perturbation technique, exploiting a simple mathematical connection that has been rec- 
ognized between the ~z-criterion, and the necessary conditions for an optimal periodic con- 
trol. The per cent production increases have been obtained as functions of the system para- 
meters, and the frequencies and amplitudes of the oscillations that can be allowed to exist 
in the system. For given frequencies and given system parameters, the maximum attainable 
production gains in the analysed type of operation, are limited by the physical bounds on 
the control fluctuations. It has been shown that production gains increase with both fre- 
quency and amplitude of oscillation. The control and state waveforms have been studied 
up to the second harmonics. The state oscillations are close to a pure sinusoid, while the 
control functions contain an important second harmonic. The average value of the control 
and state functions exceeds the optimal constant values. 
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Several of  these properties, for example the increase of production gains with both fre- 
quency and amplitude, are qualitatively well known from previous studies. The main merit 
and novelty of the present approach, is that it provides an analytical means of  numerically 
computing the optimal periodic solution for an, albeit narrow, range of  intermediate fre- 
quencies, and for small forcing amplitudes. Thus an estimate is produced of  the maximum 
production gains that theoretically could be realized in periodic operation, using the con- 
sidered oscillation frequencies and amplitudes. Also the time course and Fourier coeffi- 
cients of the corresponding cyclic motions in the system may be analytically obtained. 
Such information may be useful to determine, under what conditions periodic operation 
of  an industrial process might be successfully attempted, and even could be of some help 
in the design procedures for the controllers to be developed. 
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